
Interference Scenarios for an ARM64
Linux System

1. Index
1. Index 2
2. Documentation Control 3
3. Terms and Abbreviations 4
4. References 9
5. Purpose of the document 9
6. Structure of the document 10
7. Safety-Relevant System Features 11

7.1. SoC, Cores and Exception Levels 11
7.2. Memory accesses and the TZASC 14
7.3. Memory accesses and the MMU 14
7.4. Use of the ARM64 MMU in Linux 19

8. Guidance on Safety Analysis and Mitigations 25
8.1. Code generation 25
8.2. Limitations of both the “Tested” and the “Proven in use” argumentations 25
8.3. Limitations of the self-protection argumentation 32
8.4. Mitigation Strategies 33
8.5. Statistical considerations 34

9. Sources of Interference 36
10. Exposure to Interference 40

10.1. Criteria for evaluating interference 40
10.2. Fundamental Considerations 40
10.3. Components susceptible to spatial interference 45

11. License: CC BY-SA 4.0 55

Interference Scenarios for an ARM64 Linux System 2

2. Documentation Control

Item Description

Title Interference Scenarios for an ARM64 Linux System

Author(s) Igor Stoppa

Reviewers List Aingara Paramakuru

Deepak Nibade

Eli Gurvitz

Hadi Zibaeenejad

Lauri Ora

Michal Szczepankiewicz

Raghavendra Vishnu Kumar

Raman Kishore

Sanjay Trivedi

Shrife Mohamed

Vito Magnanimo

Revision 1.0

Date Jan 17, 2024

Interference Scenarios for an ARM64 Linux System 3

3. Terms and Abbreviations

ASID Address Space
Identifier

Value set by the kernel and used by the MMU for
automatically tagging TLB entries belonging to different
contexts. The MMU will use only TLB entries that are
tagged with the currently active ASID.

ASILn Automotive Safety
Integrity Level n

The qualification of integrity used to define in a
standardised way a set of properties of a system, in the
Automotive industry.

They go from ASIL D, more restrictive, to ASIL A, less
stringent.

CFI Control Flow
Integrity

Mechanism used (nowadays in Linux through compiler
extensions) to thwart attacks based on Return Oriented
Programming or Jump Oriented Programming

Detection This term has a certain meaning in Fusa Context, however
here it represents the ability to take notice of an
interference affecting a component with allocated FFI
requirements. It applies to interference originating from
components at a lower safety integrity level.

ELn Exception Level n The execution context at which certain code is executed:
n = 0 mean what is traditionally used for user-space

n = 1 means what is traditionally used for the kernel

n = 2 means what is traditionally used for the hypervisor

n = 3 means what is traditionally used for the secure mode
(not used in this document)

Exception (ARM definition) Event which has the potential for diverting the execution
flow. In ARM parlance, an exception can be either
synchronous or asynchronous.

Synchronous: an event triggered by the regular execution
flow. While it is not always certain that a specific action will
result in an exception, it is at least expected that such an
event might happen (which is what in Linux is effectively
called exception).

Asynchronous: an event which is either triggered by a
software error (still called exception, in Linux) or by an
external hardware component, like either an IRQ, an FIQ or
an NMI (in Linux called interrupt, fast interrupt and non

Interference Scenarios for an ARM64 Linux System 4

maskable interrupt respectively)

Exception (Linux definition) Synchronous transition between execution contexts, from
lower to higher privilege, driven by the execution flow.

FFI Freedom From
Interference

See definition 3.65 from ISO 26262 Part 1 - Vocabulary

FIQ Fast Interrupt
Request

It’s a specialised type of interrupt which, in its hardware
implementation, has a more direct path to the CPU, without
being routed through as many IP blocks like a regular
interrupt, which typically is routed through an interrupt
controller. The FIQ is indeed faster, at the cost of occupying
one hardware line that could be otherwise used for
connecting e.g. an interrupt controller. The associated
benefit is reduced latency, for applications where latency is
critical.

FuSa Functional Safety Functional safety is the part of the overall safety of a system
or piece of equipment that depends on automatic protection
operating correctly in response to its inputs or failure in a
predictable manner (fail-safe). The automatic protection
system should be designed to properly handle likely human
errors, systematic errors, hardware failures and
operational/environmental stress.
Detailed definition.

Hazard See definition 3.75 from ISO 26262 Part 1 - Vocabulary

I2C Inter-Integrated
Circuit

Bus interface connection protocol incorporated into devices for
serial communication. Typically used for relatively slow
peripherals.

Interference See FFI / Freedom From Interference

IPC Inter Process
Communication Generic reference to the mechanism (there can be multiple

implementations) used by processes to communicate with
one another; it can refer to synchronisation primitives,
message passing, signalling.

IRQ Interrupt Request Asynchronous transition between execution contexts,
usually from lower to higher privilege, but also within same
privilege, as long as it is sufficient, driven by the hardware

Interference Scenarios for an ARM64 Linux System 5

https://en.wikipedia.org/wiki/Functional_safety

events. It can still be controlled by software, though, if the
software has the ability to mask/unmask the fact that a
certain interrupt has occurred.

Interrupt

IPA Intermediate
Physical Address

The address outputted by the first stage translation of the
MMU and inputted into the second stage translation.

LTS Long Term Support Special versions of the Linux kernel which are chosen to be
the targets for backporting selected (mostly bugfix/security)
patches. They are meant to be used for actual products,
which might require sticking to a certain “stable” version for
long periods of time, with the intent of preventing such
products from becoming targets for unpatched vulnerability
and exploits.

MMU Memory
Management Unit

Component inside the SoC that primarily performs
translations operations between virtual addresses and
intermediate or physical ones, in support of various memory
management techniques, like virtual contiguity and
on-demand paging.

NMI Non Maskable
Interrupt

Interrupt line that the CPU cannot ignore by disabling it.
Depending on the application, different types of sources
can be connected. In safety applications it can be exploited
for treating exceptional events which cannot be ignored.

ODD Operational Design
Domain

A set of operating conditions for an automated system, often
used in the field of autonomous vehicles. These operating
conditions include environmental, geographical and time of
day constraints, traffic and roadway characteristics. The ODD
is used by manufacturers to indicate where their product will
operate safely.

OS Operating System An operating system (OS) is system software that manages
computer hardware and software resources, and provides
common services for computer programs.

PA Physical Address The address output to the second stage translation of the
MMU, which is placed on the memory bus.

Prevention This term has a certain meaning in Fusa Context, however
here it represents the ability either to suppress or to prevent
from happening, an interference, so that it doesn’t affect a

Interference Scenarios for an ARM64 Linux System 6

component with allocated FFI requirements. It applies to
interference originating from components at a lower safety
integrity level.

QM Quality Managed Refers to the classification of non-ASIL systems, which are
still developed according to a set of processes and
verification criteria, less restrictive than anything rated
ASIL.

Risk See definition 3.128 from ISO 26262 Part 1 - Vocabulary

SILn Safety Integrity
Level

The qualification of integrity used to define in a
standardised way a set of properties of a system, in a wide
range of industry fields: aerospace, railways, etc.

They go from SIL 4, more restrictive, to SIL 1, less
stringent.

SoC System on a Chip The shorthand for the entirety of the HW components that
constitute the collective of the cores, busses, and the
integrated peripherals.

SPI Serial Peripheral
Interface

Bus interface connection protocol incorporated into devices for
serial communication. Typically used for relatively fast
peripherals.

TEE Trusted Execution
Environment

Optional execution mode of ARM cores that creates a
separate context where certain features typically related to
trusted computing are enabled.

Toolchain The set of software tools that support the generation of
executable binary artefacts. The actual content varies,
depending on the programming language used for the
source code. However, in the Linux case, at minimum it
consists of: preprocessor, compiler, assembler, linker. But it
is common to have additional utilities, like object files
manipulation and debugging.

TLB Translation
Lookaside Buffer

Cache of address translations present within the MMU, that
avoids incurring in the penalty of generating multiple
memory accesses, when translating an address that had
been translated recently. It also caches information about
access permissions, like the read, write and execute

Interference Scenarios for an ARM64 Linux System 7

permissions.

TZASC Trust Zone Address
Space Controller

ARM ip block which is controllable from safe mode and
allows the configurations of memory zones which are
exclusively accessible from a cpu core that is in secure
mode.

VA Virtual Address The address in input to the first stage translation of the
MMU.

Notes:

● ARM and Linux attribute different meanings to the term “Exception”, but this document
will use the Linux one.

Interference Scenarios for an ARM64 Linux System 8

4. References
4.1. ARM64 Memory Management

4.2. Linux Memory Management

4.3. ISO 26262 Part 1 - Road Vehicles FuSa Vocabulary

Note: The Vocabulary refers to Road Vehicles, but the concepts used in the
present document utilise terms that are applicable also to other safety contexts.

4.4. CC BY-SA 4.0 Deed | Attribution-ShareAlike 4.0 International | Creative
Commons - https://creativecommons.org/licenses/by-sa/4.0/ License

5. Purpose of the document
This document describes some of the most relevant cases of interference that can happen
within the Linux kernel and how they are associated with failure modes.

It is common to define “safety integrity levels”, referring to groups/layers of components - both
software and hardware - which must meet similar classes of safety requirements.

These requirements are not only functional, but they also influence related processes, such as
design, testing, analysis and so on.

The interference between software components can happen at both different and same safety
integrity levels; however, it is expected, as part of the definition of said levels, that each level
shall also dictate what considerations can be made about same-level interference between
components. And even about self interference.

In practice, a higher safety integrity level assigned to a component implies more rigorous
qualification processes. Such higher rigour makes it less likely that it will interfere both with itself
and with other components belonging to the same safety integrity level, than what can be
expected from a different component, with lower safety requirements.

However, these considerations rely on the assumption that inter-level interference is managed.

Management of same level interference can translate to different practical effects, depending on
a variety of factors, but it is expected that any sort of interference which is relevant for safety
purposes will not be ignored, even if not all interference scenarios might be approached in the
same way.

The document focuses on this kind of inter-level type of interference, which must be managed,
as an enabler to making any further safety claims.

Interference Scenarios for an ARM64 Linux System 9

https://developer.arm.com/documentation/101811/latest
https://docs.kernel.org/admin-guide/mm/index.html
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

While not exhaustive, it provides a core set of benchmarks for evaluating how a certain safety
strategy might fare in dealing with hazards and related risk.

The document will attempt to be as generic as possible, however, whenever an architecture or
platform specific mechanism needs to be considered, it will refer to an ARM64 architecture with
support for EL2.

The safety analysis addresses both various upstream versions of unmodified Linux kernels and
derived ones, like the LTS kernel versions; all of them prior to introducing any mitigation that
might be deemed necessary for safety purposes.

The notions about safety used here are compatible with various applications(aerospace,
automotive, railways, robotics, etc.), even if the terminology and the process-oriented criteria
might change from field to field.

This document assumes that the Linux kernel can be either considered as a QM artefact, or that
if deemed necessary, further actions can be taken to elevate it at QM state, such as performing
code reviews, system analysis and testing.

6. Structure of the document

● The first section lists some basic characteristics of the hardware components involved in
the safety analysis, and how Linux uses them. It is not meant to be a full explanation, but
merely a reference for the considerations derived in later sections.

○ The first and second subsections focus on the hardware features.

○ The third subsection describes memory management in Linux.

● The second section provides considerations that should guide the analysis.

● The third section describes major sources of interference.

● The fourth section shows how interference can affect the system analysed.

Interference Scenarios for an ARM64 Linux System 10

7. Safety-Relevant System Features

For the purpose of this document, the following statements are made with respect to the cores
which are treated as part of the primary system. Other cores might be present, each with its own
SW stack, that effectively act as smart peripherals, within the SoC or anyways within the
package. These are not taken into account in the following chapters, because this very same
analysis could be applied iteratively to them.

What follows is a description of the system under analysis, establishing some key facts and
implications deriving from them, which will be useful when analysing failure modes, later on.

7.1. SoC, Cores and Exception Levels

7.1.1. A SoC is the hardware component which contains one or more execution
units capable of executing programs, and a number of peripheral devices,
able to control other external components.

A SoC can thus support multiple concurrent execution flows and control
multiple external devices simultaneously.

7.1.2. A core is an execution unit, inside a SoC, that executes programs.

In some architectures, a core has more than one context of execution,
and in such cases, when considering the number of parallel streams of
execution within a SoC, the number of execution contexts should be
considered instead of the number of cores. However, on ARM64, one
core equals one hardware thread of execution.

7.1.3. Cores are not necessarily homogeneous, at least from non-functional
perspective, with certain cores being optimised for lower consumption,
while others have been optimised for higher performance.

7.1.4. Within a SoC, usually all the cores have identical access rights and
capability, with regard to shared peripherals.

However, some peripherals might be (more) tightly coupled with certain
cores than with others.

Interference Scenarios for an ARM64 Linux System 11

7.1.5. At low level, the core is a complex state machine which operates on a set
of input, outputs and internal states. States are implemented mostly as
registers; which the core can read and/or write.

7.1.5.1. Directly, through the execution of specific instructions

7.1.5.2. Indirectly, as result of other operations performed

7.1.6. On the ARM64 architecture, registers are accessible through 3 different
mechanisms:

7.1.6.1. Direct access: reserved for the registers contained within the core;
the access is performed through dedicated instructions, which can
refer to registers in two ways:

7.1.6.1.1. implicit reference, used for certain special registers (e.g.
the link register)

7.1.6.1.2. explicit reference, used for general purpose registers (e.g.
the operands of a mathematical operation)

7.1.6.2. Coprocessor access: reserved for tightly coupled peripheral
components, like the MMU, which have specific numerical IDs and
are accessed through specific coprocessor-oriented instructions.

7.1.6.3. Memory-mapped: certain non-core peripherals, which often are
optional or can sometimes be present in multiple instances, are
connected to the memory bus, so that they are accessible through
the same mechanisms used for reading/writing memory.

7.1.7. Each core supports and can transition, independently from the other
cores, between 4 exception levels:

7.1.7.1. EL0, user-space

Interference Scenarios for an ARM64 Linux System 12

7.1.7.2. EL1, operating system, typically has higher privileges than EL0

7.1.7.3. EL2, hypervisor, typically has higher privileges than EL1

7.1.7.4. EL3, monitor mode, also known as secure mode, the highest
privilege mode. Its presence is discretionary and the decision is
left to the hardware designer.

In ARM parlance, the secure mode is called Trust Zone, and it
was designed for enabling the execution of a Trusted Execution
Environment.

When the security extensions are present, it introduces alternate
versions of the previous exception levels, called Secure-ELn or
S-ELn. And together they go under the moniker “Secure World”,
as opposed to the others, which are treated as Non-Secure.

The presence of an EL3 does not automatically imply the
existence of all the S-ELn levels - the ARM specifications define
many features as optional.

If present, these secure world exception levels have their own
separate set of system registers and they have access privilege
over the non secure world. More on this later.

7.1.8. Transitions between exception levels are either exceptions or interrupts.

7.1.9. The instruction set includes means for an exception level to directly
transition the flow of execution to a higher level (which will have its own
handler, to process the invocation).

7.1.9.1. The invocation of EL1 services is a SVC (system call).

7.1.9.2. The invocation of EL2 service is an HVC (hypervisor call).

7.1.9.3. The invocation of EL3 services is an SMC (secure mode call).

7.1.10. Exceptions are serviced through dedicated stacks, while interrupts are
serviced using the stack currently in use on the core receiving the signal
at the time the interrupt is handled.

Interference Scenarios for an ARM64 Linux System 13

7.1.11. While there may be custom deviations in some specific implementations,
the typical (very simplified) boot sequence places the core first in EL3, to
guarantee that the system state is not affected by any other software that
might be running from a less trusted context.

The EL3 can then proceed to initialise hardware peripherals,
load/validate/execute programs at lower level of trust and so on.

7.2. Memory accesses and the TZASC

7.2.1. The TrustZone Address Space Controller acts like a firewall on the
memory bus, preventing a core that is not in secure mode from accessing
any of the memory zones that have been configured as secure-only.

The configuration is possible only from secure-mode.

This filtering operates on physical addresses and is therefore
unambiguous, disregarding any address translation regimen that might be
in place, because the filtering happens on the output of whatever address
translation that might have happened.

7.3. Memory accesses and the MMU

7.3.1. The MMU plays a central role in ensuring memory isolation between
contexts under execution.

7.3.2. During operational state, the MMU is active.

However, there is a short transient, at boot, during which the MMU is not
yet enabled

7.3.3. Memory is divided into pages, which are chunks of predefined size and
matching alignment and properties. This definition attempts to be generic
and therefore omits certain optional features, which can operate on
smaller memory granules.

Interference Scenarios for an ARM64 Linux System 14

7.3.4. The MMU performs address translations, converting between one
memory address space to another, through the use of specialised data
structures, called page tables.

7.3.5. The MMU is able to make non-contiguous (sets of) memory pages appear
as virtually contiguous, using a scatter-gather approach, through
non-linear mappings.

7.3.6. Page tables are a formalised type of sparse tree, with nodes themselves
being pages.

7.3.7. The MMU operates translation through (up-to) 2 stages:

7.3.7.1. Stage 1: Virtual Address to Intermediate Physical Address

7.3.7.2. Stage 2:

7.3.7.2.1. For addresses originating from either EL0 or EL1:
Intermediate Physical Address to Physical Address

7.3.7.2.2. For addresses originating from EL2:

Virtual Address to Physical Address

7.3.8. VAs are the types of addresses that are regularly handled by the software
during execution, while the PA is the address that goes on the memory
bus.

In reality complex systems can also have memory management engines
that are in charge of orchestrating and optimising memory accesses
issued by various cores to achieve optimal memory bus utilisation,
however this part can be considered as fully transparent to the MMU.

7.3.9. Each translation stage uses a dedicated page table.

7.3.9.1. The first translation stage operates either from virtual addresses
(EL0 or EL1 addresses) to IPA (EL2 addresses).

The Virtual addresses used in EL0 and EL1 are from
non-overlapping ranges, and each range uses a separate page
table.

Interference Scenarios for an ARM64 Linux System 15

7.3.9.2. The second translation stage operates from IPA (EL2 addresses)
to PA (MMU Bus addresses).

7.3.10. Different exception levels

7.3.10.1. EL0 can only operate with VAs, using its own page table.

7.3.10.2. EL1 operates mostly with VAs, and it also has its own page table.

However, at boot, prior to initialising its own address translation
stage in the MMU, it will use IPAs.

Furthermore, besides using its own page table, it can perform EL0
accesses, through the EL0 page table, although this option is
mostly kept disabled.

7.3.10.3. EL2 operates mostly with its own VAs, through its own page table.

However, at boot, prior to initialising the second stage address
translation, it will operate on PAs.

But it can also emulate both EL0 and EL1 memory accesses,
through their respective page tables.

7.3.10.4. However, if present and active, the second stage translation takes
place also for addresses originating from EL0 and EL1; in this
case it’s the IPA to be converted to PA.

7.3.11. The operation of translating from one address space to another is
performed by the MMU, by using the starting address to navigate the
associated tree of page tables, starting from the root (Page Global
Directory - PGD) and ending with a leaf (PTE - Page Table Entry)

7.3.12. The MMU can be configured to use different page sizes, trading
granularity for TLB optimization. Sizes supported are 4kB, 16kB and
64kB, with 4kB being the typical choice.

7.3.13. The page table can be up to 4 levels deep:

Interference Scenarios for an ARM64 Linux System 16

7.3.13.1. Page Global Directory (PGD)

While the non secure world does not have any particular
constraint, the secure world requires that the PGD be chosen from
a memory range that has been configured as safe in the TZASC

7.3.13.2. Page Upper Directory (PUD)

7.3.13.3. Page Middle Directory (PMD)

7.3.13.4. Page Table Entry (PTE)

7.3.14. Each level is composed of pointers to the next level - the pointers are the
addresses of the pages of the next level.

Pointers are already translated.

7.3.15. To optimise the use of the TLB, it is possible to turn a branch into a leaf
node representing the underlying destination range, provided that it is
contiguous and aligned.

7.3.16. The page tables also implement translation attributes, like the ‘executable’
property for code pages and write protection for read-only data.

7.3.17. Attributes of leaf (the memory page being mapped) are set by the last
node of the tree (typically a PTE entry).

7.3.18. In practice, of the 64 bits available in the PTE entry, only a certain number
is used for the actual address of the page being mapped, and the
remaining bits are used for other purposes, including the colouring of the
mapping.

7.3.19. Performing a translation is an expensive operation, because the MMU
needs to generate various memory accesses, navigating the page table
tree.

7.3.20. Translations are not always successful; for example an address might not
have a backing memory page, or an operation might be incompatible with

Interference Scenarios for an ARM64 Linux System 17

the property associated with the memory location involved (ex: writing to a
read-only page).

These events trigger exceptions, which are expected to be handled by the
operating system.

7.3.21. To mitigate the cost of a memory translation, each stage of the MMU
implements a cache (TLB - Translation Lookaside Buffer) which can be
implemented in various ways, however it always caches not just the
translations, but also their associated properties, like write and execute
permissions.

7.3.22. Because of the caching, changes to a page table might not be visible, if a
previous, different, translation is already present in the cache, and
therefore the cache might need to be invalidated, prior to relying on the
updated translation rules.

7.3.23. In EL1, the MMU supports having 2 sets of page tables programmed with
different base addresses at the same time, for converting virtual to
intermediate physical addresses, TTBR0_EL1 and TTBR1_EL1.

7.3.24. Each core supports having its own set of MMU page tables, as described
above, independent from others, with independent TLBs that can also be
maintained independently.

7.3.25. The mapping mechanism is such that, at any translation stage, multiple
source addresses can land on the same destination address.

In a few cases this is the intended behaviour, and usually it has a
transient nature, but in general it is unwanted.

7.3.26. Since the mapping properties are associated with the source address, the
same destination address can be accessed with different properties.

7.3.27. The operating system executing in EL1 can manipulate both the core
registers and the page tables used for EL0 so that multiple user-space
programs can be run in time sharing on that core, without being aware of
each other.

Interference Scenarios for an ARM64 Linux System 18

7.3.28. Similarly, the hypervisor running in EL2 can manipulate both the core
registers and the page tables used for EL1 so that multiple operating
systems can run in time sharing on that core, without being aware of each
other.

7.3.29. Because performing page tables walks is expensive, and a suspended
context (be it either in EL0 or in EL1) will resume in the same state it had
when suspended, instead of allowing fully replacing of the TLB entries, it
can be more effective to preserve them across context changes, as long
as they are temporarily disabled.

For this purpose, it is possible to automatically tag TLB entries of the
suspended context, as they are generated, by using the ASID, which is
programmed as contexts are activated.

Each context is associated with an unique ASID and the MMU will ignore
TLB entries tagged with an ASID that is different from the active one.

7.3.30. Similarly, the EL2 TLB entries support VMIDs for tagging cached
translations, obtained from different sets of page tables associated with
either different VMs or with the hypervisor itself.

7.3.31. When present, the secure world can limit memory access to selected
ranges of physical pages by configuring the TZASC accordingly.

The secure world has its own set of translation tables, that can be used to
access memory configured as secure, as described.

However, the Secure world is likely to require access to the non secure
world as well. This need can be satisfied by grafting into the S translation
tables branches of the NS ones. In such cases, the hardware
implementation ensures that any grafted NS portion of translation tables
cannot be made to point to pages in the S world.

7.4. Use of the ARM64 MMU in Linux

7.4.1. The Virtual mapping address space is divided into 2 ranges, one used for
EL0 mappings and one used for EL1 mappings.

Each range is assigned a separate page table and both can be activated
simultaneously (when in EL1), however under normal circumstances, on
each core only one of them is active, at any given time.

Interference Scenarios for an ARM64 Linux System 19

7.4.2. In Linux it is common to talk about “user-space” as opposite to
“kernel-space” and “user-mode” as opposite to “kernel-mode”.

The “xxx-space” terms refer to the split of address ranges associated with
user processes and kernel execution.

The “xxx-mode” terms, on the other hand, refer to the exception level
active on a certain core at a given time.

7.4.3. The operation of copying/accessing data between kernel and user-space
is the exception to the rule of having only one address-space active at
any time, on a given core, since it needs both mappings simultaneously
active.

Therefore, a core can have simultaneous access to both user-space and
kernel-space, but it cannot be both in user-mode and in kernel-mode at
the same time.

7.4.4. In Linux, the page tables can have a depth that is different from what is
actually supported by the HW, for example by introducing loops on a page
level, to simulate 2 levels by having a page pointing back to a different
slot of itself.

The use of build-time macros is a more common mechanism for
collapsing levels which are formally used by the code, but will be
compiled away, if unnecessary on a specific system.

This is done, for example, when the HW has just one level, instead of the
pair (PUD, PMD).

7.4.5. The EL0 mappings are specific to each user-space process: each
process has its own page table and is unable to interfere with other
processes, as long as the underlying writable physical pages are kept
assigned to one process, max.

7.4.6. Threads belonging to the same user-space process share the same page
table.

7.4.7. Multiple user-space threads belonging to the same process can run in
parallel on different cores, simultaneously, but they must employ
techniques that ensure concurrent access to shared data will not cause
corruption.

Interference Scenarios for an ARM64 Linux System 20

7.4.8. Each running user-space thread must have its own stack, though.

7.4.9. Unless configured otherwise, user-space processes are swappable,
meaning that least-used memory pages containing read-only code can be
dropped, while least-used memory pages containing data can be dumped
to a specialised swap file or partition, on disk, and then dropped.

7.4.10. Linux uses on-demand loading for pages which have a valid virtual
address but lack backing.

When such an address is accessed, an exception is triggered and the
exception handler will schedule the loading of the related content from
storage, be it code or data.

7.4.11. The EL1 mappings, instead, are shared among all the cores that run in
EL1 mode.

7.4.12. EL1 can also have multiple threads, each with its own stack, however
they effectively act as if they belonged to the same “kernel process”.

7.4.13. And therefore, anything running within EL1 context can write into anything
else within EL1, provided that it is mapped as writable.

7.4.14. Kernel memory is not swappable: the kernel has no underlying
mechanism that would alter EL1 memory allocations, moving them to disk
or dropping them (if they are read-only pages).

7.4.14.1. Memory compaction is a partial exception: it works on virtually
linear memory allocations, changing the underlying mapping, so
that it can carve out larger chunks of contiguous physical memory,
which is particularly prized in special use cases (e.g. allocating a
large buffer for either a peripheral device or a DMA controller that
supports only direct physical memory accesses).

7.4.14.2. An underlying hypervisor could swap out either part or an entire
VM, but that would not be controllable by the operating system
(unless the hypervisor elected to let it have a say about it).

Interference Scenarios for an ARM64 Linux System 21

7.4.15. Almost all the memory the kernel sees as physical, which in reality
corresponds to the IPA, is also mapped as VA, and it is referred to as
“linear mapping”, because it is mapped as contiguous in the VA space as
it is in the IPA space.

7.4.16. Linux also supports HIGHMEM, which is physical memory that is not
directly accessible by the kernel through the linear map. It is something
that mostly impacts 32-bit systems, where physical memory can easily go
beyond the size of the address space.

In fact, usually, not even all the physical lines of the address bus are
wired, because they would not be necessary.

But certain choices of system design might make HIGHMEM necessary
even in real life for ARM64, for example if it was decided to have a flatter
page table with fewer levels.

To manage high mem, the kernel is forced to create temporary mapping
every time it needs to access a page belonging to high mem, because
there would not be any readily available corresponding address. And the
mapping would then have to be torn down, once the access is concluded.

7.4.17. The free pages allocator picks free pages straight from the way they are
represented in the linear mappings, operating on larger orders, and
chopping and dicing large-order chunks to satisfy the requests received.

7.4.18. The slub allocator obtains memory from the get_free_pages one, and
then uses various mechanisms to further dice the pages, providing
sub-page granularity, if needed. Furthermore, it also supports additional
optimizations in the reuse of previous allocations, like the ability to
support locality in a NUMA system.

7.4.19. The virtual memory allocator is capable of providing large amounts of
virtually contiguous memory, provided that there are sufficient (even
non-contiguous) pages available. The allocator will create alternate
contiguous mappings, to make them all appear as if they were
contiguous.

7.4.20. Contiguous virtual memory allocations for both EL0 and EL1 are
fundamentally identical, in the way they are performed, differing only in

Interference Scenarios for an ARM64 Linux System 22

the chosen address range, which needs to be compatible for the receiving
exception level.

EL0 mappings are also subject to active manipulation, due to on-demand
paging and page eviction, driven by a need to provide addressable
memory to other requestors.

More in details:

7.4.20.1. On-demand loading: not all the pages are loaded from disk right
away, some are loaded only upon access attempt.

Till that moment, only the address range has been reserved, and
even the backing physical page might be missing.

7.4.20.2. Active dropping of physical pages: under memory pressure from
other entities (other processes, the kernel itself), the kernel might
drop the backing physical page for constant content.

In case it is needed, it will be re-loaded. Heuristic decides which
pages to target.

7.4.20.3. Active swapping out of non constant data: pages which cannot be
dropped are written to disk, to a block device that the kernel uses
for swapping out content that is present only in memory.

The reloading mechanism is similar to what described above, only
in this case it happens from the swap device instead of from
specific files in the file system.

Here too heuristics decide which pages will be the victim.

7.4.20.4. Page sharing: primarily during the forking of a process, most of the
memory pages that do not require to be immediately copied and/or
altered (like the stack) are dealt with in a lazy way, using COW:
the page is shared, but mapped as read only by the process
“borrowing it”, so that any attempt to alter such page will trigger an
exception.

When the exception is handled, it creates a local, writable, replica
of the page, and from this point onward the new process can write
to it, because it’s not accessing a shared page anymore.

Interference Scenarios for an ARM64 Linux System 23

7.4.20.5. Page tables will evolve accordingly to the other phenomena
described above, which means that they can also grow.

7.4.20.6. Out of memory killer: this is a sort of extreme case, where an
entire process is terminated, to recover the physical pages that it
had been allocated.

7.4.21. The activity of creating new mappings has an effect on the page tables
themselves, which usually need to be expanded, to create new branches
in the tree, to support the new nodes, unless branches (partially) already
existed, due to previous allocations.

7.4.22. Pure kernel threads are executed in EL1 context, while the user
processes are primarily executed in EL0 context. However, sometimes
user processes need to transition to executing in kernel/EL1 mode, when
the operations they require are limited to be executed in EL1 mode.

This is implemented through syscalls, which are a way for EL0 to invoke
an handler in EL1.

The execution in EL0 relies on a call stack which is mapped in EL0,
however a separate call stack is used when running in EL1 mode, due to
the different page table in use.

The syscall will execute a specific service, as requested by EL0, and then
return the execution to EL0 mode, once there is no further need of EL1
privileges.

Interference Scenarios for an ARM64 Linux System 24

8. Guidance on Safety Analysis and Mitigations

8.1. Code generation

The safety analysis must include the parameters used to generate additional code that
might be introduced by the tool chain (which must be qualified too).

For example, enabling CFI mitigations has an effect on function calls that must neither
be forgotten nor ignored.

It is not sufficient to use a tool chain that claims to be qualified; it is also
necessary to confirm that it is being used within the limits of the qualification, in
case only certain portions have been approved.

This is particularly important when the toolchain might produce binary
executables which are not an exact product of the source code, because they
might introduce a grey area of functionality that has not been validated, for
example through source code analysers / linters.
In such a case, believing that one can rely on analysis of the source code alone is
mostly wishful thinking.

8.2. Limitations of both the “Tested” and the “Proven in use”
argumentations
This section is not about testing as it is typically intended during any development
and integration process. It refers to approaches that might be proposed as a
replacement for rigorous analysis and implementation of countermeasures /
mitigations:

● “Proven in use”: the software has been already deployed over a large
fleet of devices, for a very long time, with sufficiently similar use cases,
both in terms of the actual hardware used and the way the software is
exerted, to support the claim that the space of all plausible inputs has
been exhausted, a very high number of times, with sufficient evidence to
document that operations have happened within the expected operational
parameters.

Interference Scenarios for an ARM64 Linux System 25

The documenting aspect is particularly important in building the
argumentation.
Provided that all the changes are documented and proven to not
introduce relevant alterations, the “proven in use” argumentation can
provide exemption from more rigorous work.

● “Tested”: a testing campaign is created, to generate sufficient evidence
that the software operates as desired, empirically.
It can be seen as an alternative to “proven in use”, when lacking sufficient
historical evidence.

The following considerations are related to these empirical argumentation and
the associated limitations.

Even if “proven in use” and “tested” are different approaches, they are both
exposed to variations in the conditions under which data is gathered, which tend
to lead to comparable considerations.

8.2.1. Empirical data collected from extensive utilisation must prove to be
relevant to the case at hand.
From this point of view, extensive utilisation in the field can be seen as
equivalent to execution of a campaign of particularly well focused testing.

8.2.2. In order to leverage the results of empirical data, it must be proven that it
is representative of the actual operating conditions that will be found in
real life, during the utilisation of the product in the field.

8.2.3. In the case of historical data, it is necessary for the use case(s) that were
leveraged to collect said data, to be also compatible with the intended
new use, having similar fields of application and use cases.

8.2.4. To be credible, any empirical argumentation must survive this
non-exhaustive list of invalidating objections:

8.2.4.1. Timing:

8.2.4.1.1. Exerting the code in the field, under a certain set of old
conditions, can be significantly different from doing it still in

Interference Scenarios for an ARM64 Linux System 26

the field, but under a new set of conditions. Or from doing it
in an artificial setup.

This applies to both microprocessor-level operating
conditions and macro level operating conditions, described
as ODD.

8.2.4.1.2. Changes to the way the code is exerted can expose
behaviour (and defects) that are significantly different from
what emerged during either previous appraisal or testing
campaigns.

Some causes:

8.2.4.1.2.1. Variation in the build parameters,
for example enabling/disabling debug options

8.2.4.1.2.2. Variations in HW builds, where different HW
revisions have different timing

8.2.4.1.2.3. Variations in the code itself, for example a device
driver changing from polling to interrupt-driven.
This applies both to changes that might take place
over a long period of time, for the “proven in use”
argumentation, and to changes that might take
place during development, for a testing campaign
that takes place in parallel to the development of
the product.

8.2.4.1.2.4. Variations in the user-space payload, especially if it
comes with RealTime constraints, since they can -
and often will - preempt the operating systems in
ways that are also affected by the payloads
themselves.

8.2.4.1.2.5. Variations in the memory pressure, coming both
from kernel and user space.
For example, a new version of a product might
have additional applications, or the applications

Interference Scenarios for an ARM64 Linux System 27

might require more memory, or change the pattern
at which they allocate memory (ex: going from
individual allocations to bursts).

Or the Linux system might be running as one of the
partitions managed by an hypervisor, and the other
partitions would alter their behaviour, without the
hypervisor enforcing any form of capping.

8.2.4.2. Memory layout:

Changes to the order that data and code appear in memory can
expose different components to never-detected-before defects.

For example:

8.2.4.2.1. Changes to the layout used by the linker

8.2.4.2.2. Changes to the sizes of buffers from old to new builds

8.2.4.2.3. Changes to the set of device drivers in use, with
consequent alteration of the memory occupation

8.2.4.2.4. Changes to the order of the initialization sequence of SW
components, including device drivers.

For example:

8.2.4.2.4.1. Adding a new driver that registers an init function of
whatever type (late, early, etc) will perturbate the
sequence associated to the init functions of that
specific init type (late, early, etc.)

8.2.4.2.4.2. Changing the init priority of a device driver (ex: from
late to early init) will affect the timing of all the types

Interference Scenarios for an ARM64 Linux System 28

involved, and possibly also of the types in between
them.

Here is a very simple example.

A defect in the use of a statically allocated buffer causes an
occasional overflow, which trashes the adjacent memory. But the
memory happens to belong to a variable that is never used after
the overflow happens.

Or maybe it is padding for optimised aligned access.
Then something changes; for example the variable being
overwritten is turned into constant, and moved to a different
segment.

Then, the same memory will be overwritten, but it might now be
assigned to some data which is still referred to, after the trashing.

Even very effective testing or extensive use cannot rule out
the presence of defects; it can only prove that there are no
observable defects.

Perturbing the structure of the system voids the validation.

8.2.4.3. Equivalence of binary code:
changes to the build parameters and toolchains are likely to affect
the actual executable code, with effects comparable to what
discussed above. This refers to “live” binary, once loaded in
memory and executed, rather than binary executables as they are
in the file storage, where they might contain debug symbols and
other data which does not affect what is loaded in ram and run.

8.2.4.4. Changes of toolchain are likely to invalidate the “proven in use”
argumentation.

Evidence (like regression testing performed by the toolchain
vendor) that the new toolchain produces similar binary artefacts
can help in supporting the continued validity of the argumentation,
however they should be supported also by additional testing of the
code base under qualification.

Interference Scenarios for an ARM64 Linux System 29

8.2.4.5. Generic effects of the observation on the system observed:
Unless the observation is proven to be completely non-invasive, it
is expected that it will bring changes to the system, which will alter
its behaviour.

Examples:

8.2.4.5.1. Need to allocate more memory for local storage of
measurements performed during the testing.

8.2.4.5.2. Network bandwidth required or telemetry, where
applicable.

8.2.4.5.3. Cpu used for performing the measurements (especially if
polling-based) and transmitting them.

While it might be tempting to refer to unit-test, this should not be
taken as a reference, because it is very unlikely to be able to
reliably reproduce the full spectrum of events that can be
encountered in a field-testing situation. And it would be anyways
yet another equivalence that would have to be proven, while the
whole point of the testing is to ensure that the right real-life
conditions are met.

8.2.5. To make any reasonable claim of “empirically validated”, regardless
if it is “proven in use” or “tested”, it is necessary to:

8.2.5.1. Identify all the system-level use cases

8.2.5.2. For each system-level use case to be ignored, provide evidence
that the use case cannot cause interference, under any
circumstances that are expected to be met during intended use.
This requirement means that it is not acceptable to omit a use
case without having analysed it, and proven that it is
acceptable to omit it.

Interference Scenarios for an ARM64 Linux System 30

8.2.5.3. For each system-level use case to be considered, document if
anything has been omitted from the testing plan in any capacity,
and prove that they are acceptable from the perspective of safety
analysis.

This refers to, for example, testing only for sub-ranges of certain
parameters, or ruling out that one phenomenon might affect
another, thus avoiding the test of combinations/permutations of
parameters belonging to different subsystems (“equivalence
classes”, in ISO26262 parlance), for the sake of reducing
time/cost associated with testing.

8.2.5.4. For the remaining scenarios, prove that all the permutations of the
relevant operating parameters have been exerted sufficiently (and
justify what is deemed to be sufficient).
This is called, in the world of Functional Safety “Input triggers
Space”.

Since Linux is a very complex system, it might not be feasible to
achieve such a level of analysis that it would cover all the possible
scenarios.
This would, obviously, invalidate any “proven in use” claim
and it would require, instead, a qualification campaign.

8.2.5.5. Empirical evidence must be intended as proof of the inability
to trigger errors, rather than as proof of their absence.

This is a fundamental concept, because it means that a
change in the operating conditions - with consequent
adjustment of the utilisation scenarios, can expose latent
defects that have always been present.
It shows how “proven in use” argumentation really hinges on
proving not only that previous use was not exposing
problems, but also that the future use will happen in a very
controlled environment, that is proven to be equivalent to the
previous one. And, similarly, that “tested” was so exhaustive
to cover all the plausible scenarios.

8.2.6. To make any reasonable claim of either “proven in use” or “tested”,
it is necessary to:

8.2.6.1. Identify all the differences against the system configuration(s) that
generated the empirical data.

Interference Scenarios for an ARM64 Linux System 31

8.2.6.2. For each of them, assess the impact on the argumentation.

8.2.6.3. For each difference that is negligible, provide evidence that indeed
it can be ignored.

8.2.6.4. For each difference that is not negligible, provide analysis and, if
needed, new, additional evidence that the future utilisation is safe.

8.3. Limitations of the self-protection argumentation

8.3.1. Since the self protection actuated by the kernel is primarily implemented
through the page tables, which are exposed to interference, it is
questionable how well the kernel can be expected to protect itself, without
relying on an external component with a sufficiently high safety integrity
level, and typically shielded from interference that might happen either
within the kernel or as manifestation of them.

8.3.2. Similarly, in case specific features/mechanisms (for example redundancy
of certain data parameters) are introduced and used as part of the safety
argumentation, they first need to be demonstrated to have the required
safety integrity level.

The challenge with these additional mechanisms is to prove that they are
sufficiently simple to not have dependency on the very same context they
are trying to protect (similar to the concept of Technical Independence).

It needs also to be clarified what it is really meant with “protection”,
because, strictly speaking, protection requires either the ability to dodge
interference or the ability to recover from it both sufficiently and timely.

For example, using canary values on the call stack can probably be
sufficiently good for detection of certain types of interference, like stack
smashing, however, once an interference is detected, it is unlikely that it
can be corrected through the use of the canary values.

8.3.3. Even by allowing the definition of protections to be broadened to include
what is in fact detection, it needs to be rooted into a simple, easy to both
prove and verify, mechanism.

Interference Scenarios for an ARM64 Linux System 32

For example, a self-test diagnostic capable of detecting spatial
interference in a certain component, by running periodically and/or in
event-driven mode, is still exposed to interference and it might not be
easy to prove that such interference can at the very least be detected.

However, by pairing it with a simpler mechanism, like a watchdog, then it
can become easier to make claims about detecting the interference,
because the detector can be designed in a way to fail to ping the
watchdog, in case of its own corruption.

8.4. Mitigation Strategies
It is a fact that there is almost no defects-free code, and the Linux kernel is
certainly not an exception, therefore any analysis/mitigation that relies on proving
that the Linux kernel is safe, should also come with a self evaluation of its own
vulnerability to unforeseen failures, based on how exposed it might be to some
assumptions turning out to be false, including assumptions about testing
coverage, for example.

In other words, there are 2 paths, when assessing the effectiveness of
countermeasures for interference on a target:

8.4.1. The typical path: identify the type(s) of interference and introduce
countermeasures which are independent from the possible source.

This approach ensures that, even in the presence of an incomplete
analysis of the sources of interference, the countermeasures will still be
effective, provided that all the types of interference have adequate
countermeasures.

8.4.2. The alternative path: identify all the sources of interference, for all the
types of interference that are meaningful, and introduce a
countermeasure for each of these sources.

This approach is theoretically equivalent to the previous one, but it relies
on having an absolutely exhaustive list of sources of interference, each of
them paired with an acceptable countermeasure, or proof that a
countermeasure is not necessary.

The burden of proof about completeness and effectiveness is on whoever
might choose this path.

Interference Scenarios for an ARM64 Linux System 33

8.5. Statistical considerations

8.5.1. In the light of previous observations, about hard barriers vs deductive
argumentation and defect density, one should also consider the chances
that a certain component might generate interference (which depend also
on its size and complexity) vs the frequency said component is exerted
(assuming a periodic or quasi-periodic invocation).

8.5.2. This leads to a qualitative evaluation of which components are more likely
to cause interference and therefore deserve additional analysis, from
multiple perspectives: complexity, frequency of execution, types of
operations performed, detectability of interference it might generate,
delays in the detection, etc.

This is not a small task, but it is critical in understanding the price to pay
for utilising the inductive method, and failing to do so will introduce the
risk of having a system that both lacks physical barriers and has not
been properly analysed.

There is also a feasibility problem: linux is ever evolving and there is no
official bug tracking system. At most some 3rd party might keep track of
defects related to security and vulnerability, however that is far from being
the full picture.

One might be tempted to use mathematical models that attempt to model
the software in terms of bug density, severity, etc. and use said model to
predict the probability of interference from a certain component.

While this approach might work with components that are fully owned by
a single organisation / entity and tracked appropriately to support said
approach, it is very easy to see how the concept would fall apart, when
applied to Linux.

One might be tempted to fork Linux, to make it fall back in the fully-owned
software scenario, however this approach would be unfeasible, because it
would rapidly become unmanageable, with need of backporting an
increasingly number of patches such as security fixes, and the local fork
diverging from upstream, effectively losing most of the advantages
brought by the use of Linux.

Interference Scenarios for an ARM64 Linux System 34

8.5.3. Such consideration points to the fact that certain mechanisms which can
be seen as supportive of integrity (and thus safety) in user-space are a
double-edged sword, since they can get invoked quite frequently and can
be fairly large and complex, in terms of size of code. In a way that cannot
be reliably handled.

Some examples:

8.5.3.1. cpu/memory/network cgroups

8.5.3.2. security frameworks, like the Linux Security Module and SELinux.

They are particularly relevant because their behaviour is strongly affected
by entities considered hostile or at the very least not friendly, like
non-safety relevant processes attempting to generate large amounts of
cpu load / memory pressure / network traffic or file accesses.

8.5.4. Even system activity such as unrestrained patterns of memory allocation /
release cycles is more likely to trigger problems.

These allocations can happen at high frequency, while the underlying
system changes its state rapidly, producing a large variety of
permutations in the code paths being followed for achieving the very
same results; for example the previous allocation patterns, triggered also
by unrelated processes, can lead to different ways of procuring the pages
required.

In some cases it might be necessary to stall and invoke the buddy
allocator, in others it might be possible to just pluck the memory from the
queue implemented by the slub allocator for the local core.

Taking as example a non-safety relevant application which generates
many events such as allocating/releasing memory / opening and closing
sockets and files / spawning and starting and stopping threads, it will
trigger associated high frequency execution of code paths within SELinux
and cgroups, to validate the legitimacy of said actions.

This is perfectly fine from the perspective of containing user-space,
however, since neither SELinux nor cgroups are by default safety
qualified, it also means that within the kernel there will be a high
frequency execution of a large amount of code which can cause either
direct or indirect interference.

And such interference is not always detectable, depending on which
component it might affect.

Interference Scenarios for an ARM64 Linux System 35

9. Sources of Interference
It is useful to model the most probable causes for spatial interference, even if not
exhaustively.

Note: for the purpose of this document, the hardware is considered qualified up to the
highest safety integrity level required by any use case. The qualification is to be intended
at unit level, meaning that no hardware component will exhibit aberrant behaviour, when
exposed to the supported stimuli.

In other cases, should the previous assumption not be true, each HW component must
be individually checked for safety qualification and those not matching safety
requirements must be included in the list of sources of interference.

9.1. DMA-capable entities

Those components which sidestep the MMU-enforced memory protection, by
generating write operations on the memory bus through other bus-master
devices than the MMU.

The catch here is that, even if such access is performed by a separate DMA
controller, the programming and triggering of the write operation is performed by
a device driver that is exposed to interference and can therefore cascade it
(through either mis-configuration or mis-operation of the DMA controller).

Causes: The interference is possible because it originates from a component
that is architecturally capable of generating it, but said component was not
assigned sufficiently high safety requirements, that would account for such
possibility. Nor a mechanism is in place to manage the interference.

Effects: Unpredictable corruption of the state of safety-relevant context. The
extent of the corruption is highly dependent on local conditions that are not
necessarily repeatable.

Detectability/Mitigation: This sort of interference is practically impossible to
detect, without HW means, like an IO/MMU, a memory firewall, or some form of
redundancy.

Interference Scenarios for an ARM64 Linux System 36

Lacking any of that, it is only possible to try to detect side-effects, without
guarantees on the timing.

9.2. Components present in EL1, with lower safety integrity level

Any code running in EL1 has unbridled write access to any non-write-protected
memory pages in EL1.

Any SW component which runs in EL1 with any safety integrity level, is to
be considered as a source of interference to any other EL1 component with
higher safety integrity level.

Typically, this would include the entirety of the Linux code base, as it is obtained
from upstream, unless it has been adequately reviewed and fixed, or it is used in
a way that mitigates its intrinsic low safety integrity level.

Causes: The lower safety code must be assumed to contain defects that will
generate interference which cannot be claimed to be mitigated purely by the
rigorous development process.

They can be either low level defects, or conceptual defects.
Typical defects:

● Functional defects

Can be anything, literally, however, even assuming a reasonable amount
of unit test, extensive integration testing is what can make the difference
between qualification at different safety integrity levels.

● Races

Possibly a specialised case of the previous point, it is a type of fault which
can emerge from missing to consider all the possible execution paths,
especially when factoring-in unrelated asynchronous and synchronous
events, caused by memory pressure, I/O, task migration, underlying
presence of other partitions managed by an hypervisor, etc.

All of this can contribute to diverging from the expected (and intended)
execution flow, if concurrence was not taken into account properly.

● Use-after-free

This is a source of interference that can be hard to detect in a subset of
cases.

Interference Scenarios for an ARM64 Linux System 37

Primarily, it affects memory pages which are accessed through the linear
mapping, provided by kmalloc/get_free_pages, then get released and
eventually re-allocated, possibly also through different allocation
mechanisms.

And then the previous reference is used again, after being released.

A write operation will cause an interference that can affect any other
component that received the memory allocation, in an unpredictable way.

Effects: Any data within the EL1 context is automatically downgraded to the
lowest safety integrity level present within EL1. Any memory used for EL0 is
mapped in EL1, so also anything user-space is equally exposed, both code and
data, constant or not.

Detectability: Here HW-based detection through an IO/MMU or a memory
firewall is not an option, because the source of interference is a core itself, going
through the MMU.

Mitigation: Detection needs to rely on indirect effects that are not guaranteed to
be noticed. A micro kernel would deal with this problem through MMU-enforced
isolation, but Linux is a monolithic kernel and cannot do that.

9.3. Partitioning of hardware components between different safety integrity
levels: constraints and limitations

This type of interference could be seen as a design flaw, but in practice one
might not be able to implement as much hardware partitioning as the ideal case
would require.

The typical example is a shared hardware resource, for example a bus controller
like I2C or SPI, where multiple external peripherals might be connected, and only
some of them would belong to a safety scenario at a certain safety integrity level,
while others would be at a lower safety integrity level.

Another common example could be an interrupt controller with shared lines.

Causes: Even assuming spatial FFI between the lower safety kernel components
and the driver for the shared resource, the lower safety components might
mis-configure the shared resource (e.g. by interfering with a channel assigned to
a different peripheral) or hog it to the point of affecting the operations of the
higher safety ones .

Interference Scenarios for an ARM64 Linux System 38

Effects: Higher safety components depending on the shared resource might be
unable to use it as intended, being starved, or their use might be disrupted in
other ways, either corrupting the state of the shared device or of other
components that are proxied by the shared device.

Detectability/Mitigation: As long as it is possible to set expectations about the
temporal evolution of the systems whose safety is being analysed, it might be
possible to rely on a timeout-based detection system, however, purely
asynchronous events, like a safety-relevant peripheral attempting to request
servicing through an interrupt, could go completely unnoticed.

9.4. System libraries

The Linux kernel provides a large number of libraries implementing basic
functions, both specific to an operating system and others that replace what
would be part of the compiler libraries. In Linux the compiler is used in
free-standing mode and therefore even basic I/O like the support for printing to
console is not available by default.

These libraries can be invoked from both highest integrity and lower integrity
contexts, which means that they need to be validated and managed according to
the integrity level depending on them.

Examples: list management, locking.

Causes: The library is used against safety-relevant data, and it needs to be
qualified for doing so.

Effects: Lack of adequate safety integrity level can cause undetectable
interference in the data that the library operates on. Or, even worse, on data
which happens to be writable by the library, even if it is unrelated.

Detectability/Mitigation: This sort of interference is practically impossible to
detect, and the only option left is to qualify the libraries to the required safety
integrity level.

Interference Scenarios for an ARM64 Linux System 39

10. Exposure to Interference

10.1. Criteria for evaluating interference
The Linux kernel is a very complex SW component, which has tight integration with the
HW components of the system it happens to run on.

Even limiting the analysis to spatial interference, there is a broad range of elements
which can suffer from it and cause various degrees of failure in the system.

Depending on the use cases/expectations, certain failures might be relevant from a
safety point of view, or not. It is therefore impossible to assert in absolute terms what
constitutes a safety-relevant interference, without referring to a specific system.

However, it is possible to produce a set of high level considerations, to be used when
analysing a specific system.

Even the outcome of the evaluation is subordinate to the requirements set ad-hoc for a
specific application: the very same interference can be seen as acceptable, under
certain requirements, and unacceptable under stricter requirements.

10.2. Fundamental Considerations
Nevertheless, it is possible to conjure some considerations that will apply to any analysis
of a system based on Linux, even if they will lead to conclusions which are specific to
certain use-cases.

10.2.1. No matter how a system might be partitioned for facilitating its analysis,
the only true boundaries to interference are those enforced by either the
MMU or some other, equivalent, HW component (e.g. a HW Memory
Firewall), defining a memory context.

Other methods might give the illusion of providing partitioning, but it
rapidly becomes even harder to prove their correctness.

Formal verification might be tempting, but it would not be practical, when
applied to a complex Os that was not designed from the ground up for it,
not to mention the fact that - lacking any control whatsoever on the OS
release process, and the content of said releases, it becomes hopelessly

Interference Scenarios for an ARM64 Linux System 40

unpredictable to anticipate the amount of work required for refreshing the
verification on new OS releases.

Chosen a target for interference, there are several ways the interference
might happen:

10.2.1.1. Self interference, where the component does not behave
according to expectations and compromises its own safety, due to
defects in one or more of design, implementation, integration.

10.2.1.2. Interference from other components which are indeed expected to
interact with it, but for some reason are not acting according to
expectations.

10.2.1.3. Interference from other components that are not expected to
interact at all with it, yet they do it.

The latter is particularly troublesome, because, lacking hard
boundaries, anything can interfere with anything else.

As long as the target for interference is exposed to other components
which have the same or higher safety integrity level, the exposure is
acceptable, even if not desirable.

However it is normally the case that different components have different
qualifications.

10.2.2. Attempting to rely on induction for introducing a “soft” partitioning doesn’t
work too well either, because it would require:

10.2.2.1. Hard evidence that the reasoning is completely exhaustive of all
possible interactions (omitting something due to ignorance is not
acceptable, because it doesn’t prove that it was a valid
simplification).

10.2.2.2. Re-assessment of the induction every time the system is updated
with new SW that can potentially interfere, till it is proven
otherwise.

This approach either rapidly becomes unsustainable, or it imposes
very harsh limitations on the frequency for introducing updates.

Interference Scenarios for an ARM64 Linux System 41

Frequency that might not be acceptable, if it doesn’t meet the
minimum requirements of delivering updates to a product.

Security updates are a perfect example of a situation where, even
in presence of a release plan, critical vulnerability can require
out-of-cycle releases. And the security fixes have the potential of
voiding precedent safety assessments.

10.2.3. Risking to state the obvious, there is one exception to having
HW-enforced partitioning: time-enforced partitioning.

If it can be proven that a certain component will cease operations past a
well established watershed moment, then it is possible to consider that
time boundary as an effective isolation.

However, it is still necessary to prove that, after the aforementioned
watershed, no interference has been found, which makes this
argumentation far less trivial to implement than it might appear.

The Linux kernel init phase is a major opportunity for this sort of
argumentation, because Linux supports even wiping and reusing the
memory initially assigned to “__init” data and code segments.

Other operations might equally benefit from a similar argumentation,
provided that it can be proven that:

● They are employed only during init.

● Their effect can be verified right after init has completed.

10.2.4. Every subsystem relies on memory, allocated in various ways, to manage
its internal states.

The internal states of any subsystem are exposed to potential
interference from any other code that happens to be executed within the
same memory map .

10.2.5. When considering means for mitigations to interference, it must be
considered how they operate:

10.2.5.1. “Passive” means: they are based on redundancy or similar
principles.

Interference Scenarios for an ARM64 Linux System 42

They can be equally exposed to interference, but this is
acceptable, as long as it is proven that they are sufficiently
resilient (ex: use of self-correcting encoding, like CRCs).

These means are less invasive, because they only need to be
hooked into the execution flow, but they do not alter it
substantially.

When subject to interference, they - most likely - do not affect the
component that they are trying to protect.

This approach doesn’t introduce correlation between the target for
the mitigation and the mitigation itself, therefore it can be
considered sufficiently trustworthy to detect a single interference.

However, it is expensive to handle any form of redundancy on a
large scale.

For this approach, it must be proven that, given a certain target for
instrumentation, the specific implementation of the redundancy is
sufficient.

10.2.5.2. “Active” means: they introduce restrictions or anyways alter the
way that the system behaves.

For example, they can introduce runtime restrictions, dynamically
limiting the space of possible actions to those which are allowed,
by design, at any given time.

In practice, anything which is not explicitly allowed becomes
forbidden and can raise some form of exception, to notify that an
illegal operation was attempted and possibly performed.

This approach aims at restricting what can happen silently when a
component goes out of its expected operational zone, but without
compromising what happens within the legitimate operating
parameters values.

Therefore, because of the tighter integration, “active” means have
a potential for becoming a source of interference themselves,
causing cascaded interference, if not adequately treated.

It must be proven that they are themselves protected from
interference (technical independence), or else the argument
is moot.
The advantage they have over the passive type is that they can
scale up better, because the underlying mechanism doesn’t have
to be applied to each individual parameter to be protected, but

Interference Scenarios for an ARM64 Linux System 43

rather rely, for example, on establishing memory regions and
boundaries.

10.2.6. Depending on the subsystem analysed, the very same interference can
require different types of mitigations.

For example, assuming that it’s acceptable to perform polling and
validation on a system where the amount of data to monitor is small, the
same approach might not be suitable for another system where the
amount of critical data to monitor would be so large that the polling and
validation activity would generate an excessive overhead, where the
meaning of “excessive” is subject to the specific system and
requirements..

Similarly, on another system, there might be a relatively small amount of
data to poll and monitor, but it might be changing so rapidly that the
associated polling would, again, cause excessive overhead, because it
would have to happen with comparable rapidity.

10.2.7. The requirements will affect as well what sort of mitigation might be
necessary.

For example, minimal or no mitigations might be required, if the only goal
is to detect interference in selected subsystems and prevent effects from
spreading in an uncontrolled fashion.

However, if it is required to ensure a set level of availability, pure detection
might not be an option, and prevention would become necessary, with all
the associated implications.

10.2.8. When dealing with interference, it boils down to two options:
(Note: FuSA and FMEA jargon assign very specific meanings to the
words below, when referring to failure modes. However, in this document,
they are used with regard to the interference that might introduce a failure
mode, and therefore these words are to be intended exclusively with their
plain meaning from the English vocabulary. See also their definitions in
the section Terms and Abbreviations.)

10.2.8.1. Prevention (of an interference)
The act of denying a potential interference the possibility of
actually manifesting itself.

Interference Scenarios for an ARM64 Linux System 44

Prevention is harder to implement, but it ensures that the relevant
context will not be compromised, and thus doesn’t come with a
timing constraint, enabling higher levels of availability.

10.2.8.2. Detection (of an interference)
The act of identifying an interference that has already happened,
either directly or indirectly.

Detection, on the other hand, doesn’t require the creation of any
barrier, provided that there are mechanisms in place that can
sense that an interference has happened.

However, it does put a strain on the sensing, because it needs to
happen sufficiently fast to satisfy the timing specified by the
related safety requirements.

10.2.9. Obviously, there would be a third option: removing any source of
interference from components at lower safety integrity levels.

In this case, everything which is within a memory boundary needs to be
qualified at sufficient safety integrity level, to avoid also indirect
interference of secondary order or higher, through cascading.

This level of blanketing, very broad qualification is very unlikely to achieve
and even more fleeting, given how it would rely on every single
component to remain qualified.

10.2.10. When it comes to interference, as long as detection is a viable option, it’s
not so much about how catastrophic the interference might be, but how
likely it is that it might go undetected and take the system out of its
operational parameters in a way that is not mitigated (or even
considered), and what the effects would be.

10.3. Components susceptible to spatial interference
The following is a minimal, non-exhaustive, set that should be considered in a
safety checklist.

10.3.1. ASIL components at system initialization

Interference Scenarios for an ARM64 Linux System 45

While freedom from interference is meant to be a “live”, persistent
property, with any violation detected timely, some of the mechanisms
employed rely on detecting unexpected evolutions in their state.

But first it is necessary to assess whether the initial state is safe, or if it
has already been compromised during its initialisation phase.

Exposure: Such an assessment could be avoided, if it was possible to prove that
all the mechanisms employed for the initialisation are safe, and that unrelated
unsafe components cannot interfere.

But in case that was not possible, then there is a risk of interference, for any
component of a certain level of safety, coming from lower safety integrity level
ones.

Effects: The effects are specific to each individual component, however a lack of
confidence that the system is within safe operating margins even before it begins
active operations would void any further assumption about its continued safety.

Detectability: This is the base-line level of detection, that a component with an
allocation of safety requirements is still safe according to its intended safety
integrity level, at the very beginning of operations. It should always be possible to
do so.

Were it not possible, then it becomes questionable how it can be proven, later on,
that it is still operating according to its safety requirements.

10.3.2. EL1 system registers

Not all system registers are equal, some have special purposes that can
deeply affect the flow of execution.

Exposure: Within a certain exception level, most registers are writable directly,
without any form of protection.

Depending on the register type, they might be more or less exposed to
interference:

● Registers encoded within instructions are less likely to be
accidentally accessed

Interference Scenarios for an ARM64 Linux System 46

● Registers that are memory mapped in a parametric way are more
exposed to risks of interference (this is an ARM-specific problem:
as a counter example, x86 uses special instructions for these sorts
of registers and therefore they do not belong to the same space as
regular memory).

Effects: This is not possible to be generalised, because each type of register can
lead to different effects, if exposed to interference.

Obviously, those related to control flow have a bigger potential to lead to unsafe
behaviour.

Detectability: The only way to perform direct verification would be to have some
sort of twin system evolving in parallel. In certain SoCs there is indeed a
lock-step mode where a shadow twin is connected, and it mirrors every action, to
validate it, assuming that the interference is not happening systematically on
both.

Up to a certain point, the shadow twin could be emulated with a hypervisor and a
“shadow VM”, but that would create a large overhead, and also pose the
questions of which synch points to use and how often to perform the comparison
of the registers.

Entry / exit points of function calls might be good candidates, but since some of
the Linux operational parameters are intentionally randomised, it should be
proven - for each individual use - that it’s either reproduced or irrelevant for safety
purposes.

A simpler approach would instead define checkpoints based on design and
expected behaviour, and monitor that such checkpoints are reached timely.

But the caveat is in ensuring that checkpoints are defined correctly and that they
are sufficient. Which then needs to be proven.

Prevention is an easier argument to support, if it can be substantiated.

10.3.3. EL1 Safety-relevant Call Stacks used for:

10.3.3.1. Safety-relevant kernel threads

10.3.3.2. Safety-relevant processes

Interference Scenarios for an ARM64 Linux System 47

10.3.3.3. Exception handlers
Same stack is used for both safety-relevant and non
safety-relevant exceptions.

Exposure: They are mapped in regular EL1 memory and they are writable

Effects: The registers saved on the call stack can be corrupted in ways that are
not easy to detect, and cause an uncontrolled drift in the operating parameters
outside of their admissible values.

Detectability: Direct detection is possible only through introduction of
mitigations, like canary values, and even that is not 100% reliable. Indirect
detection is even more difficult to implement, because of the wide range of
possible effects.

10.3.4. EL0 Safety-relevant Processes Memory

These processes represent the typical high-level use-cases encountered in a
system with safety requirements.

Their overall safety depends on multiple factors, which can be monitored with
different levels of success, however this specific point refers to their freedom
from spatial interference.

Exposure:

● The physical memory (IPAs, if considering also EL2) mapped
in EL0 for processes to use is also part of the linear mapping
in EL1 and fully addressable and writable.

● The memory used for the page table of the EL0 process is equally
exposed to interference originating within EL1

Effects: Depending on the chance, either data, code, or both, including stacks,
belonging to the process can be corrupted in any unpredictable way.

This path of interference can also affect constant data and code belonging to the
process, because their write protection exists only in the EL0 mapping, not in the
EL1 mapping, where they are completely vulnerable.

Interference Scenarios for an ARM64 Linux System 48

One can assume that alterations to the page tables would be less likely to pass
unnoticed,since it’s extremely unlikely that any corruption would point to another
memory page with content that would not cause the MMU to throw an exception
about a malformed page table entry.

But that would be an educated guess, rather than an objective fact.

Detectability: Here too, the interference can assume a very wide range of
effects, only the most blatant of them easily detectable.

For example, corruption of a table of constant data would require a periodic
verification through either checksums or similar measures.

Corruption of code would be far more easily detectable.

Some types of interference can be spotted far more easily than others.

10.3.5. EL0 Shared Memory / Pipes for Safety-relevant Processes

Conceptually similar to the previous point, however possibly subject to a different
mitigation strategy, it is listed separately to ensure visibility.

Exposure: Like any other memory mapped in EL0, it is exposed to interference
from EL1 through the linear map.

Effects: Data exchange between user processes can be corrupted.

Detectability: Processes can implement some form of checksumming for
detecting corruption. This can become burdensome for them.

10.3.6. EL1 Memory Managers - Buddy Allocator - get_free_pages()

The Buddy allocator is at the heart of almost any runtime allocation performed in
a Linux system, including both the creation and whole lifetime support of memory
allocations for user space processes.

Exposure: The allocator relies on its own internal data structures, which are
supportive of keeping track of which memory pages are available, which are in
use and the exact way they have been partitioned.

These data structures have their own life cycle and are sourced from the very
same physical pages that are used also for satisfying the allocation requests from
various memory users.

Interference Scenarios for an ARM64 Linux System 49

This includes both memory used for safety-relevant use cases and for non
safety-relevant use cases.

The data is fully writable by any code running in EL1

Effects: Any corruption in this set of internal data structures can cause cascaded
interference on safety-related data, for example by handing over, as usable, the
memory pages already reserved for a safety-relevant process.

This would cause the pages to be overwritten, with a wide spectrum of possible
outcomes.

Detectability: Anyone’s guess. Depends on the specific case, but it must be
assumed that it would not be detectable in more cases than it would be
acceptable.

Or else, evidence must be produced, to claim otherwise.

Certainly, the interference cannot be detected directly, but only through 2nd or
3rd order side effects that might not always be easily detected.

One should either assume the worst, and detect/prevent it, or provide
evidence about why the worst would be unlikely to happen, in case the
mitigations are not extensive.

Considerations: Unless proven that the memory manager is:

● Of adequate safety integrity level (the highest required between EL0 /
EL1)

● Free From Interference for what concerns its own metadata

It is not sufficient to prove at runtime that safety-relevant allocations have
happened in a successful way (for example doing them at init and verifying
post-init that they were correct), because:

● If the memory manager is QM, it can still cause interference to the
existing allocations in use by components with safety requirements, for
example by lending a memory page that is already and still in use by a
safe component.

Interference Scenarios for an ARM64 Linux System 50

● if the metadata of the memory manager is still exposed to kernel QM
components, it can still be corrupted and lead to the same type of
problems mentioned in the previous point.

10.3.7. EL1 Memory Managers - Slub allocator - kmalloc()

The slub allocator is the go-to allocator for typical runtime needs of allocating
memory at runtime, both because it is more efficient, especially when dealing
with per_cpu allocations, and because it is capable of dishing out sub-page
allocations. It is widely used within EL1, but it doesn’t have direct effects on EL0
processes.

It specialises in optimising finer grained allocations than the buddy allocator,
including their lifecycle and caching.

Exposure: The slub allocator has a compounded exposure, since it uses the
buddy allocator as backend, but it also has its own set of internal data structures,
which is writable by any code with EL1 write capability.

Effects: The effects are comparable to those caused by a corruption of the
buddy allocator, minus the effect on EL0 processes.

Detectability: Similar to the detectability of the buddy allocator.

Considerations: Similar to those made for the buddy allocator.

10.3.8. EL1 Memory Managers - VMALLOC - vmalloc()

Vmalloc too has its own set of internal data structures (for keeping track of a
large variety of runtime parameters), and it is involved with both EL1 allocations
and with the creation and backing of EL0 processes.

Compared to the previous allocators, vmalloc adds one more layer of complexity
due to the fact that it also needs to keep track of address ranges and physical
backing of reserved addresses.

Exposure: The exposure is even more compounded by the fact that vmalloc
relies on both the buddy allocator and the slub allocator for its internal data
structures.

Interference Scenarios for an ARM64 Linux System 51

Furthermore it relies even on itself for allocating housekeeping memory of a
certain type, in case the amount of memory required is so large that it cannot be
satisfied by kmalloc.

Effects: Very unpredictable, but they can certainly lead to the corruption of
safety-relevant context.

Detectability: Similar to the detectability of the buddy allocator.

Considerations: Similar to those made for the buddy allocator.

10.3.9. EL1 Memory Managers - others

While they might not be as broadly known and used as the ones previously listed,
the Linux kernel does provide a host of other allocators which are meant to
support the management of special memory.

Examples: genalloc, memblock, cma_alloc.

Exposure: also these allocators rely on metadata they need for housekeeping,
typically obtained from kmalloc/vmalloc, therefore they are equally exposed to
interference coming from anything else with lower safety integrity level.

Effects: In case the device drivers using these allocators must meet safety
requirements, the effects of interference can be even worse than on other
allocators, because in some cases these allocators are used for keeping track of
free/used blocks in storage devices, like I2C/SPI permanent memories.

A corruption of the bitmap tracking free/used blocks can easily lead to
permanent obliteration of some/all of the data stored.

Detectability: This is a sort of problem that might not be trivial to detect, without
ad-hoc mitigations.

10.3.10. EL1 PageTables Integrity

The EL1 page tables are relevant not only to safety contexts; far from it.

Interference Scenarios for an ARM64 Linux System 52

However, their integrity is a necessary condition for the integrity of the safety
contexts.

At the very least, one must consider the portion of the page tables which
supports safety-relevant mappings.

Indirectly, though, also the rest of the mappings is relevant, to ensure that a
safety-relevant page is not mapped also elsewhere.

Exposure: The memory pages comprising the page tables are writable from
within EL1 context.

Effects: In the best case, corruption won’t cause noticeable problems, however it
can cause anything from crashes to subtle corruptions, depending on what might
cause the interference.

In the next-best case, the effects will be so massive that they can be detected
immediately.

Detectability: Also in this case, direct detection is unlikely, and indirect detection
is based on the ability of modelling the most probable side effects.

10.3.11. EL1 PageTables Consistency - Double Mapping Prevention

Albeit it could be seen as a sub-case of integrity of the page table, consistency
should be considered separately, because it is not a problem of the page tables
themselves, but of what information is stored in them, in the first place.

It consists of the same page being mapped at two or more different addresses,
and for different purposes. It can be caused either by a defect in the
management of free pages, similar to what described earlier, or by the corruption
of the metadata that a page-based memory manager maintains for housekeeping
purposes.

Exposure: A memory page used for safe content - even if mapped as read-only
at a certain address - can be mapped as writable (and written!) at another
address, completely unrelated.

Effects: In the best case, corruption won’t cause noticeable problems, however it
can cause anything from crashes to subtle corruptions, depending on what might
cause the interference.

Interference Scenarios for an ARM64 Linux System 53

In the next-best case, the effects will be so massive that they can be detected
immediately.

Detectability: Also in this case, direct detection is unlikely, and indirect detection
is based on the ability of modelling the most probable side effects.

10.3.12. EL1 Task Execution

This represents a host of features that are in charge of juggling tasks; for
example:

● Management of related data structures (tasks and cred structures,
stacks, etc).

● Management of threads; creation, destruction.

● Work queues.

● Timers / scheduling.

Exposure: Any of the features mentioned can be affected by interference, in
some form.

Effects: Not all the features are equally affected, from a safety perspective.
For example, the credentials structure is less likely to cause direct problems to
safety.

Detectability: Provided that the timing constraints for periodic events is known,
external monitors can be deployed, to confirm that the task is being executed
accordingly to the expected timing constraints.

Interference Scenarios for an ARM64 Linux System 54

11. License: CC BY-SA 4.0
DEED

Attribution-ShareAlike 4.0 International
Full License text: https://creativecommons.org/licenses/by-sa/4.0/

You are free to:
Share — copy and redistribute the material in any medium or format for any purpose,
even commercially.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and
indicate if changes were made . You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Notices:
You do not have to comply with the license for elements of the material in the public domain or
where your use is permitted by an applicable exception or limitation .

No warranties are given. The license may not give you all of the permissions necessary for your
intended use. For example, other rights such as publicity, privacy, or moral rights may limit how
you use the material.

Interference Scenarios for an ARM64 Linux System 55

https://creativecommons.org/licenses/by-sa/4.0/

Notice
The information provided in this speci�cation is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation (“NVIDIA”) does
not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This
publication supersedes and replaces all other speci�cations for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modi�cations, enhancements, improvements, and other changes to this speci�cation, at any time and/or
to discontinue any product or service without notice. Customer should obtain the latest relevant speci�cation before placing orders and should verify
that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this speci�cation.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such
inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these speci�cations will be suitable for any speci�ed use without further testing or
modi�cation. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product
is suitable and �t for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may a�ect the quality and reliability of the NVIDIA product and may result in
additional or di�erent conditions and/or requirements beyond those contained in this speci�cation. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this
speci�cation, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
speci�cation. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability
towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2023-4 NVIDIA Corporation and a�liates. All rights reserved.

Interference Scenarios for an ARM64 Linux System 56

